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ABSTRACT: Over 90% of investigational drugs fail during clinical
development, largely due to poor translation of pharmacokinetic,
efficacy, and toxicity data from preclinical to clinical settings. The
high costs and ethical concerns associated with translational
failures highlight the need for more efficient and reliable preclinical
tools. Human-relevant new approach methodologies (NAMs),
including advanced in vitro systems, in silico mechanistic models,
and computational techniques like artificial intelligence and
machine learning, can improve translational success, as evident
by several literature examples. Case studies on physiologically
based pharmacokinetic modeling and quantitative systems
pharmacology applications demonstrate the potential of NAMs
in improving translational accuracy, reducing reliance on animal
studies. Additionally, mechanistic modeling approaches for drug-
induced liver injury and tumor microenvironment models have provided critical insights into drug safety and efficacy. We propose a
structured and iterative “a priori in silico” workflow that integrates NAM components to actively guide preclinical study design�a
step toward more predictive and resource-efficient drug development. The proposed workflow can enable in vivo predictions to
guide the design of reduced and optimal preclinical studies. The findings from these preclinical studies can then be used to refine
computational models to enhance the accuracy of human predictions or guide additional preclinical studies, as needed. To conclude,
integrating computational and in vitro NAM approaches can optimize preclinical drug development, improving translational
accuracy and reducing clinical trial failures. This paradigm shift is further supported by global regulations, such as the FDA
Modernization Act 2.0 and EMA directive 2010/63/EU, underscoring the regulatory momentum toward adopting human-relevant
NAMs as the new standard in preclinical drug development.
KEYWORDS: new approach methodologies (NAM), physiologically based pharmacokinetic (PBPK),
quantitative systems pharmacology (QSP), organ-on-chip, microphysiological system, preclinical drug development

Animal experimentation has been used in medical science since
ancient history and continues to be a part of the
pharmaceutical research and development process.1 In the
1930s, following the sulfanilamide tragedy, the US Food and
Drug Administration (FDA) followed by other regulatory
authorities mandated in vivo animal studies, especially for the
safety evaluation, of investigational therapeutics.2 In the last
century, in vivo models played a crucial role in advancing drug
discovery and development by providing insights into
biological and disease mechanisms and for testing drug safety
and efficacy.
Key questions to assess during the preclinical drug

development stage include identifying the appropriate target
receptor, enzyme, or gene, predicting human safety and
efficacy, and determining the optimal human dosing regimen,

among others. Accurate translation from preclinical studies to
the clinical setting is critical for selecting a successful drug
candidate for further development. Despite promising
preclinical results, over 90% of drugs fail during clinical
development. The primary reasons for these failures are lack of
efficacy and unacceptable toxicity in humans.3,4 The key
reasons for preclinical in vivo models’ inability to accurately
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predict efficacy and safety in the clinical setting are mechanistic
differences between animal models and humans, a lack of
disease representation in animal models, and the homogeneous
nature of the animal sample population.5,6 Traditional
preclinical to clinical translation methods using in vivo studies
are becoming even less suitable for clinical projections with
advancements in drug modalities, such as bispecific antibodies,
antibody-drug conjugates (ADCs), targeted protein degraders,
and cell and gene therapy.4,7 Moreover, preclinical in vivo
studies often involve a high financial burden and raise ethical
concerns.8 The average preclinical development cost per
successful drug was estimated to be $237.8 million. After
accounting for failed clinical trials, the median total cost of
bringing a new drug to market was estimated to be $985.3
million (95% CI, $683.6−$1228.9 million). The immense
burden of failed preclinical to clinical translation drives up the
cost of the marketed drugs. Moreover, rising awareness of
animal sentience and suffering has sparked significant
resistance to animal research.9 Overall, there is a growing
need to explore alternative approaches to animal testing to
improve translational research accuracy and efficiency.
Due to scientific, financial, and ethical reasons, there has

been a growing push to develop and validate human-relevant
“new approach methodologies” (NAMs) and to reduce and
replace animal use in drug research and development.9−14

Global regulatory committees have adopted the “3Rs”
principles (reduction, refinement, replacement) for guiding
decisions on animal experimentation.10,11 Human-relevant
NAM approaches, including advanced in vitro systems, in
silico mechanistic models, and computational techniques such
as artificial intelligence and machine learning, can improve

preclinical study design. The NAM methods include in vitro
and in silico approaches; however, to fully realize the predictive
power of NAMs, a combinatorial approach is important. Such
an approach can integrate mechanistic mathematical models,
advanced computational methods such as artificial intelligence
(AI) and machine learning (ML), with strategically designed in
vitro and in vivo experiments.12 By combining the strengths of
each methodology, we can enhance translational relevance,
improve predictive accuracy, and ultimately streamline the
preclinical drug development process.13,14

Here, we first review examples of NAM-based approaches
for pharmacokinetics (PK), pharmacodynamics (PD), efficacy,
and safety predictions for preclinical to clinical translation
(Figure 1, Table 1). We also review case studies of innovative
in vivo study designs and the current regulatory landscape for
NAM approaches. Next, we propose an alternative “a priori in
silico” preclinical development workflow that integrates
standard and advanced in vitro experiments and in silico
models to support efficient and effective preclinical study
designs and discuss future considerations for the development
and validation of such approaches. Lastly, we discuss the
challenges and future perspectives for the adoption of NAM-
based approaches in drug discovery and development.

■ PBPK MODELS FOR EFFICIENT TOXICOKINETIC
AND PHARMACOKINETIC PRECLINICAL
EVALUATIONS

Physiologically based pharmacokinetic (PBPK) models,
combined with other quantitative methods, i.e., quantitative
structure activity relationships (QSAR) and in vitro to in vivo
extrapolation (IVIVE) of drugs’ absorption, distribution,

Figure 1. Overview of new approach methodologies to streamline preclinical drug development. The NAM methods include � in vitro and in
silico approaches. In silico methods can be further divided into mechanistic modeling and machine learning based approaches. To fully realize the
predictive power of NAMs, a combinatorial approach is essential � the one that integrates mechanistic mathematical models, advanced
computational methods such as machine learning and strategically designed in vitro and in vivo experiments. Well-designed and advanced in vitro
experiments are foundational to inform mechanistic models, such as PBPK and QSP. Such in silico models when combined with ML methods can
provide explainable insights from large data sets. This framework can support efficient and optimal in vivo study designs to support successful
clinical translation. ADMET = absorption, metabolism, distribution, elimination, and toxicity; ML = machine learning; MOA = mechanism of
action; NAM = new approach methodology; PBPK = physiologically based pharmacokinetic modeling; QSAR = quantitative-structure activity
relationship; QSP = quantitative systems pharmacology.
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metabolism, and elimination (ADME) characteristics, have
been extensively evaluated for predictions of small molecules
and biologics PK characteristics.15−22 Whole-body and
minimal PBPK (mPBPK) models incorporating key mecha-
nisms playing a role in ADME have been thoroughly
investigated for preclinical species and humans. These models
have established a robust framework for predicting in vivo PK
properties using species-specific physiological and drug-specific
physicochemical properties. However, preclinical PBPK
models are frequently fitted to and qualified using independent
in vivo data sets, which typically demand a large amount of
data. In the absence of such large data sets, it could be said that
the potential of PBPK models for streamlining preclinical
development remains under-explored to date. Case studies
have demonstrated that the predictions of models based on “a
priori in silico” approach using in vitro data and prior
knowledge have shown reasonable agreement with in vivo
observed data for numerous small molecules and bio-
logics.23−25 Additionally, such an approach can provide
valuable mechanistic insights into drugs’ PK characteristics
early. For example, the ’a priori in silico’ approach, as
demonstrated in the case of PBPK modeling of 22 monoclonal
antibodies, accurately predicted nonspecific binding, FcRn
interactions, pinocytosis, and transcytosis processes, high-
lighting its potential to reduce preclinical in vivo require-
ments.25 Thus, PBPK models offer a promising framework for
predicting drug PK properties and reducing the reliance on
extensive preclinical in vivo data.
It is not always feasible to conduct preclinical studies to

measure drug concentrations at the target site of action. The
number of case studies where generic PBPK models were
coupled with expanded mechanistic models for organs of
interest is described in the literature.15,21,26,27 For instance, a
PBPK model expanded to include CNS subcompartments
developed for a therapeutic antibody targeting tau protein
using in vitro and physicochemical data demonstrated
reasonable agreement with observed serum, CSF, and brain
interstitial fluid data from rats and monkeys.28 In another
example, a Krogh cylinder model integrated within PBPK
models for predictions of drug penetration into tumor tissues
based on drug physicochemical properties and tumor
vasculature-related parameters captured the heterogeneous
tumor distribution of T-DM1, matching experimental results in
tumor-bearing mice and predicted the perivascular distribution
observed at the clinical dose in patients.29 This framework has
been extensively used in supporting first-in-human dose
predictions for oncology drug development, reducing the
need for in vivo studies evaluating tumor drug penetra-
tion.30−32 Overall, the PBPK models allow predictions of drug
exposures at target sites of action.
The integration of computational models with advanced

human-relevant in vitro technologies, for example, organ-on-
chip, 3D cultures, and organoids, can enhance the predictive
power of preclinical PK studies.33 For instance, a mathematical
framework for liver-on-chip systems-DigiLoCs (digital liver-on-
chip simulator) was first used to simulate drug clearance in
liver-on-chip systems.34 The model consists of three compart-
ments�media, interstitial, and intracellular space�to repre-
sent the drug distribution and metabolic processes occurring
within the liver-on-chip. By incorporation of drug-specific
physicochemical properties, chip-hardware-specific details, and
biological parameters, the DigiLoCs distinguished between
active biological processes (i.e., metabolism) and passive

processes (i.e., permeability and partitioning). A proof-of-
concept translation to human PK for propranolol was
performed by integrating human clearance values predicted
from DigiLoCs into a whole-body PBPK model to simulate
human drug kinetics. The simulations from these models
closely matched clinical observations. In another example,
interindividual variability in hepatic drug metabolism for six
small molecules was evaluated using cryopreserved hepatocytes
from five donors cultured in a liver-on-chip system.33

Metabolic depletion profiles, along with gene expression and
functional viability markers, were incorporated into PBPK
models to translate to human PK. The findings suggested
substantial interdonor variability in drug metabolism, gene
expression, and liver-specific functions and demonstrated the
potential of this approach for predictions of human PK along
with interindividual variability. Overall, PBPK models based
solely on standard or advanced in vitro experiments and
physicochemical data can be used to predict in vivo PK profiles
to gain valuable mechanistic insights into a drug’s PK
properties. Findings from such models can then be used to
design smaller and more efficient preclinical toxicokinetic and
PK study designs to support further development and
qualification of the models.

■ MECHANISTIC DOSE−RESPONSE EVALUATIONS
FOR PHARMACODYNAMICS AND EFFICACY

Mechanistic models, informed by rigorous in vitro exper-
imentation, can establish robust dose−response predictions to
support PD and efficacy preclinical study designs. The Thiele
Modulus calculation can be used to readily predict antigen
receptor saturation at a target site given antigen density, drug
permeability, and drug-antigen binding.4 Such a calculation can
be readily used to understand the extent of target engagement
and therapeutic activity relative to other drugs of similar classes
or mechanisms of action. For example, an analysis of approved
ADCs and checkpoint inhibitors for solid tumors provided
mechanistic insights into tolerability and receptor saturation
potential at clinically approved dosing.4 In another example, a
mechanistic model of growth and kill dynamics for rapidly
growing and persistent bacterial subpopulations, informed by
hollow-fiber infection systems, accurately predicted intrale-
sional drug exposures and treatment outcomes for various
combination antimicrobial regimens in tuberculosis pa-
tients.35,36 Disease- and modality-specific mechanistic models
are effective tools for rigorous evaluations of dose-PD-effect
relationships.37−39 For example, the efficacy and toxicity of
bispecific T-cell engagers are dependent on various factors,
such as target affinity, avidity, tumor characteristics, and
immunological conditions. A mechanistic platform model for
bispecific T-cell engagers, calibrated using extensive in vitro
experimental data for numerous cell lines and different
experimental conditions, and validated against clinical data
for three bispecific T-cell engagers, can be useful to perform in
silico evaluations to support the development of follow-up
bispecific T-cell engagers.38 Along these lines, mechanistic
models, informed by in vitro data, provide valuable insights
into dose−response relationships, target engagement, and
therapeutic efficacy, supporting preclinical study design and
drug development.
Digital twins (DTs) provide computational replicas of

biological systems, enabling virtual simulations of drug effects.
For example, a mechanistic tumor microenvironment DT
successfully predicted the response to antiangiogenic therapies,
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optimizing dose selection in preclinical studies.40 A mecha-
nistic tumor microenvironment model incorporating angio-
genesis and fluid dynamics along with mouse xenograft DTs
was demonstrated to be an efficient predictive tool for studying
the effects of antiangiogenic cancer treatments, including
successful combination treatment strategies.41 The DTs
provided mechanistic insights into interplays between different
mechanisms of action of antiangiogenic cancer treatments,
which usually cannot be evaluated in vivo. Overall, these
approaches demonstrate how mechanistic modeling coupled
with well-designed and efficient in vitro experiments can
predict the clinical success of investigational drugs more
accurately.

■ MECHANISTIC DOSE−RESPONSE EVALUATION
FOR SAFETY

Evaluation of the potential adverse impact of investigational
agents on various organ systems prior to first-in-human-trial
initiation is essential and is required by regulatory agencies.
Numerous mechanistic models enabling predictions of system-
specific drug-induced adverse effects, such as hepatotoxicity,
nephrotoxicity, cardiotoxicity, and hematotoxicity, have been
developed, and such models for other systems are of interest.42

Combinatorial NAMs, for example, by integrating in vitro
experimental data with mechanistic models, can improve
translational safety predictions.
Hepatotoxicity. A quantitative systems toxicology (QST)

model of drug-induced liver injury (DILI) for assessing
hepatotoxicity risk of investigational agents developed over a
period of a decade has now become an important decision-
making platform supporting regulatory submissions.43,44 The
DILIsym platform, widely used in regulatory submissions,
integrates liver cell populations, biochemical systems, and
metabolism processes to assess hepatotoxicity risk. Recent
applications in regulatory decision-making have demonstrated
its ability to refine clinical dose selection. This model,
combined with in vitro dose−response experimental data,
has been used to evaluate drug-induced liver injury potential
and adjust clinical trial protocols for multiple small-molecule
new drugs, including combination treatments, i.e., ferroquine-
acetaminophen, solithromycin-metformin. The model has also
been useful to understand the mechanistic details of the liver
toxicity pathway and early discontinuation of an investigational
small molecule, ORM-48824.45 BIOLOGXsym combined liver
toxicity data from the liver microphysiological system with
PBPK and DILIsym QST models to simulate the liver toxicity
potential of two biologics, tocilizumab and a discontinued
investigational agent, cimaglermin alfa. The model was able to
recapitulate clinically observed liver toxicity following treat-
ment with tocilizumab and cimaglermin alfa.46

Nephrotoxicity. A QSP model informed by kidney-on-
chip experimental data was able to successfully predict the
impact of three different drugs on kidney injury biomarkers.47

The model predictions aligned well with observed clinical data
for three drugs, cisplatin, rifampin, and gentamicin, demon-
strating their potential of NAMs for effective in vitro to in vivo
translation.
Cardiotoxicity. In silico cardiac electrophysiology models

have been extensively evaluated, encompassing a range of
models including translational multiscale QST models, QSAR-
based approaches, physics-based models, and atom-level
interaction models.48−51 A mechanistic PK−toxicodynamic
cardiac tissue was used in conjunction with data from in vitro

2D and 3D cell culture experiments, including cardiomyocytes
and AC16 cells exposed to doxorubicin over time.48 The
model successfully translated in vitro experimental findings
into preclinical- and clinical-level data from the literature and
was used to suggest doxorubicin dose fractionation to reduce
cardiotoxicity.52 A similar example includes PK/PD modeling
of liver-cardiac organ-on-chip data for terfenadine to assess
CYP3A4-mediated metabolism and downstream cardiac
toxicity (QT prolongation) effects driven by its metabolite.
The model predictions reasonably agreed with the observed
changes in field potential duration in both humans and in vivo
models.33

Hematotoxicity. Myelosuppression is one of the most
common adverse effects associated with oncology therapeutics,
and QSP models of hematopoiesis and granulopoiesis have
demonstrated successful in vitro to human translation of drug-
induced myelosuppression effects.53−55

Overall, these examples demonstrate the crucial role of
combinatorial NAM approaches, by integrating in vitro
experiments and mechanistic models, to minimize the risk of
drug-induced toxicity.

■ MACHINE LEARNING FOR TRANSLATING LARGE
DATA INTO INFORMATION

With advancements in computing power, algorithms, and data
accessibility, the rise of AI/ML applications has accelerated
significantly. AI/ML algorithms have enhanced the precision
and efficiency of predicting relationships between molecular
structures and ADME and toxicology (ADMET) proper-
ties.56−58 By leveraging large data sets, these methods enable
modeling of complex structure−activity relationships based on
molecular, chemical, and biological interactions. These
advancements accelerate the identification and optimization
of novel small-molecule and biologic therapeutics with
favorable ADME and safety profiles, thereby streamlining the
drug discovery and reducing reliance on animal testing during
the discovery stage. For example, a QSAR graph neural
network-based platform with high predictive performance was
developed and is available open-source on a server to predict a
wide range of ADMET properties based on the molecular
structure of small molecules.57,58 In another example, ML-
based QSAR in combination with a PBPK modeling
framework allowed full PK time course predictions of novel
small molecules.59 Such models allow for predictions of
ADMET, potentially reducing the number of required animal
PK studies. AI/ML-based approaches, increasingly recognized
by regulatory agencies such as the FDA, have demonstrated
potential for predicting drug toxicity. For example, a GAN-
based DT accurately predicted the hepatotoxicity potential for
a blinded set of novel compounds, aligning with clinical
findings. For example, generative adversarial network (GAN)-
based DTs for rats were used to simulate the hepatotoxicity
potential of novel drugs with high accuracy. The models
predicted the hepatotoxicity potential of novel drugs, enabling
predictions of toxicity profiles across various chemical
structures and drug classes, and the findings from simulations
correlated closely with clinical findings.60−62 Overall, ML-
augmented translated approaches to preclinical drug develop-
ment can enhance drug discovery and research by refining and
reducing the use of animals.
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■ INNOVATIVE AND EFFICIENT PRECLINICAL
STUDY DESIGNS

Model-based approaches are ideal for enabling innovative and
efficient preclinical study designs, optimizing the number of
animals and samples, and selecting appropriate end points,
doses, and dosing regimens. Martin et al. (2016) proposed a
compact preclinical chemotherapy safety study design, i.e.,
collecting PK and PD samples from the same animals, across
the full PK/PD profile.54 Through simulations, it was
concluded that the compact design preserved parameter
accuracy along with variance estimates compared to those of
the standard design. Moreover, the compact design allowed
estimation of the impact of interoccasion variability on
parameters. Ciecior et al. (2021) proposed the use of xenograft
models with heterogeneous tumors to better replicate the
tumor heterogeneity observed in human cancer.63 Their
logistic regression-based sample size estimation indicated that
utilizing a heterogeneous tumor model design could reduce the
required number of animals by 61−78% compared to
traditional xenograft study designs, to maintain the minimum
power of 80%. Selimkhanov et al. 2017 leveraged a statistical
and mechanistic model to quantify the variability in metabolic
end points for an antiobesity drug trial, accounting for both
inter- and intra-animal variability.64 Model-based evaluations
of virtual cohorts were performed, allowing for estimation of
effect sizes and variances to ensure adequate statistical power.
By properly powering for primary end points, the authors
reduced the number of animals required while minimizing the
risk of false conclusions. Virtual control groups represent
historical control data collected from prior standardized in vivo

studies. The use of virtual control groups allows stand-
ardization of control data across studies, allows potential
inclusion of potentially larger and high-quality control data,
reduces the number of animals required, and may accelerate
preclinical development timelines.65 For example, Gurjanov et
al. (2024) evaluated the potential of virtual control data from
historical 4-week oral toxicity studies in rats for reproducibility
and validity.66 The study suggested that carefully chosen
historical control data can effectively replace concurrent
controls without compromising the overall study conclusions.
This study established a foundation for future validation of
virtual controls in regulatory toxicology. Overall, these case
studies provide examples of more accurate, efficient, and
ethically responsible preclinical studies.

■ REGULATORY FRAMEWORK FOR NAM
APPROACHES

The limitations of traditional preclinical approaches and the
importance of more predictive, human-relevant models have
been increasingly acknowledged by global regulatory author-
ities. This is evidenced by major legislative steps such as the
European Medicines Agency’s Directive 2010/63/EU and the
FDA Modernization Act 2.0 (Figure 2).9,10 These frameworks
have helped accelerate the shift away from mandatory animal
testing, allowing for regulatory acceptance of in vitro, in silico,
and integrated approaches to evaluate drug safety and efficacy.
Global initiatives, such as the EU’s Innovative Task Force and
the US NIH’s Complement-ARIE program, underscore a
shared commitment to advancing, validating, and implement-
ing NAMs into drug development.13,14 The FDA recently

Figure 2. Evolution of the regulatory framework for new approach methodologies use in drug development. The global regulatory authorities are
increasingly embracing NAMs through legislative reforms, strategic roadmaps, and collaborative initiatives aiming to modernize drug development
by replacing traditional animal testing with more predictive, human-relevant approaches. 3Rs principles = replacement, reduction, and refinement
of animal use in research; Complement-ARIE = complement animal research in experimentation; EMA = the European medicines agency; FDA =
the food and drug administration; ICCVAM = interagency coordinating committee on the validation of alternative methods; ITF = innovation task
force; NAM = new approach methodologies; NIH = the national institute of health.
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released a strategic roadmap to phase out animal testing in
drug development, with an initial focus on monoclonal
antibodies due to their well-characterized mechanisms and
predictable pharmacology.11 This marks a targeted effort to
integrate NAMs in areas where scientific readiness supports the
immediate regulatory application. Looking ahead, the global
roadmaps focus on sustained stakeholder-regulatory engage-
ment, harmonized guidance development, and continued
investment to enable the successful transition to scientifically
robust, nonanimal methods for streamlined preclinical drug
development. While regulatory advances in the U.S. and EU
are promising, challenges remain in achieving global
harmonization, particularly across emerging markets. Sponsors
must, therefore, navigate jurisdiction-specific requirements
while contributing to ongoing international efforts to stand-
ardize NAM acceptance.

■ FUTURE PERSPECTIVES AND CONCLUDING
REMARKS

We discussed in vitro and in silico approaches, along with case
studies, that can be useful for efficient and more accurate
preclinical to clinical translation of investigational drug PK,
efficacy, and safety characteristics. We also discussed the
evolution of the regulatory framework relevant to NAM
approaches.
Alternative Preclinical Development Workflow. The

integration of NAMs in preclinical development workflows
requires not only the development and validation of these
methods but also the continuous application of the latest
advancements within iterative “learn and confirm” workflows.
The current standard preclinical development workflow begins
with in vitro experiments, followed by preliminary in vivo
studies. Data from these studies inform final in vivo
experiments, either directly or through modeling and

simulation. Results from the final in vivo studies are used in
modeling and simulation to determine first-in-human study
doses and dose regimens. We propose an “a priori in silico”
approach (Figure 3) that integrates standard and advanced in
vitro experiments to inform computational models with drug-
specific parameters. Simultaneously, these silico models should
incorporate physiological- and disease-specific parameters
derived from prior data, models, and knowledge. This
framework can enable in vivo predictions to guide the design
of optimal and reduced preclinical studies, including
determining dose, dosing regimens, biomarkers, end points,
and sampling time points. The results from in vivo studies can
be used to refine the models to enhance accuracy for human
predictions or guide additional preclinical studies, if needed.
The proposed workflow would enable conducting well-
designed and efficient preclinical studies, providing data
necessary for more accurate predictions for human translation.
To our knowledge, this is the first review to propose a
systematic, iterative “a priori in silico” preclinical workflow that
integrates human-relevant in vitro systems with predictive
modeling to inform and reduce in vivo experimentation. This
approach not only streamlines development but also aligns
with emerging regulatory directions, offering a pragmatic path
forward for more efficient, ethical, and human-relevant drug
development.
Combinatorial NAMs. Integrating the power of mecha-

nistic models, cutting-edge computational techniques like AI/
ML, advanced in vitro systems, and well-designed in vivo
experiments allows maximizing the predictive potential of these
methods, as demonstrated by the mature examples such as the
DILIsym platform, the hollow-fiber infection model, the
DigiLoCs MPS Digital Twin platform, and the PBPK-ML-
based small molecule PK predictor that we discussed.12

Further work should focus on advancing combinatorial NAM

Figure 3. Current standard and proposed preclinical development workflows to support translational predictions for first-in-human study designs.
The current standard preclinical development workflow begins with in vitro experiments, followed by preliminary and final in vivo studies. Here, we
propose an “a priori in silico” approach that integrates advanced in vitro data with physiological and disease-specific in silico models. The proposed
“a priori in silico” approach includes the following steps1: conduct initial in vitro experiments to generate data pertaining to biochemical properties,
molecular interactions, cellular responses, etc.,2 integrate in vitro data into computational models, use computational models to analyze and predict
species-, drug- and dose-specific response,3 utilize in silico models to predict preclinical pharmacokinetics, toxicity, and biological efficacy before
actual animal testing,4 optimize experimental conditions, dose selection, and study parameters, and design smaller preclinical studies based on a
priori predictions,5 iterative feedback as needed, i.e., use results from preclinical in vivo studies to refine in vitro, in silico, and in vivo experiments,
as needed to improve predictive accuracy.
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methods.13 Like DigiLoCs, computational modeling of in vitro
systems can distinguish drug-specific parameters from system-
specific ones. These drug-specific parameters can then be
integrated into mechanistic models, such as PBPK and QSP
models, to increase the robustness of their in vivo predictivity.
For example, while in vitro tumor growth inhibition studies
using individual patient-derived (PDx) tumor organoids
predicted individual chemotherapy response in metastatic
colorectal cancer and GI cancer patients, a prospective Phase 3
study that treated patients based on PDx recommendations
failed to elicit an objective response.67−69 Incorporating PDx-
based drug effect parameters along with patient-specific
immune and mutation data within mechanistic in silico models
may improve predictions of individual patient-level responses
and investigate the potential gap leading to a lack of observed
objective response in the clinical study. Furthermore,
integrating different in silico methods, such as hybrid
mechanistic-ML models, can provide maximal information
from multidimensional and complex data. ML approaches
alone can be valuable for pattern recognition and hypothesis
generation using large data, such as multiomics and high-
throughput; however, the inherently sparse and complex
nature of biological systems suggests that combining
mechanistic modeling with ML methods, such as using
physics-informed neural networks and scientific ML ap-
proaches, would allow deeper understanding of factors
affecting heterogeneity in disease and population.70 Moreover,
integrating hybrid mechanistic-ML models to generate DTs of
patients and animals can facilitate iterative learning and enable
the continuous optimization of predictions. Overall, the
combination of multiple NAMs is essential to fully unlock
their potential.
NAMs for Newer Modalities. One area where NAM

methods hold immense potential is the translation from
preclinical to clinical settings for cutting-edge therapeutic
modalities, such as ADCs, bi- or multispecific antibodies, and
cell and gene therapies. Platform QSP models for preclinical to
clinical translation for ADCs and bispecific antibodies that
integrate mechanistic details of the modality, target, and
disease have been developed.27,32,38 These models incorporate
a wide range of in vitro and in vivo data, with in vivo data
primarily pertaining to PK from mice and nonhuman primates,
as well as tumor growth inhibition data from mouse xenografts.
Future efforts can evaluate integrating PBPK models to inform
PK parameters and organoids or organ-on-chip experimental

data to inform PD, i.e., tumor growth inhibition parameters.
Similarly, QSP models can be developed for cell and gene
therapies incorporating relevant biology and mechanistic
details, including cell or gene therapy vector biodistribution,
target and off-target cellular disposition, as well as transgene
production, distribution, and elimination and organ-on-chip
systems can be used to inform PK and PD parameters of the
platform in silico gene therapy models. Moreover, organ-on-
chip models or in vivo advanced imaging techniques can be
evaluated to collect data from the same animals over time,
reducing the number of required animals for in vivo studies.
Thus, NAM methods offer significant potential for improving
preclinical-to-clinical translation of novel modality therapeutics
by integrating mechanistic modeling and organ-on-a-chip
systems to refine PK and PD predictions while reducing
reliance on animal studies.
Quantification of Predictive Accuracy and Resource

Savings. Incorporating NAM-based approaches into preclin-
ical development can significantly reduce the number of
required animal tests and thus costs.71 For example, an
evaluation of 870 liver-on-chips and a blinded set of 27 drugs
demonstrated high predictive accuracy for DILI, with a
sensitivity of 87% and specificity of 100%.72 This performance
surpasses that of traditional preclinical models, which often fail
to predict human hepatotoxicity. Switching to liver-on-chip for
DILI evaluations could save approximately $3 billion annually
by enhancing productivity through earlier and more reliable
predictions. Incorporating an in silico approach along with
liver-on-chip experiments could be even more beneficial.
Evaluating 100 compounds for DILI during the early
preclinical phase using traditional in vivo methods only, with
a sensitivity of around 50%, requires approximately 5000
animal tests.73 On the other hand, combining DTs of in vitro
microphysiological systems with computational human phys-
iological DILI models can improve sensitivity to over 95%,
reducing the need for animal testing to just 50 tests in
general.72 Thus, this transition can reduce the reliance on
animals, enabling ethical and cost-effective preclinical testing.
Future work should further evaluate the proposed combina-
torial NAM-based approaches along with quantitative measure-
ments of their actual impact on costs, prediction accuracy, and
success in clinical development.
Current Challenges of NAM Approaches and Poten-

tial Solutions. There are some limitations of NAM
approaches. Table 1 summarizes the limitations of key NAM

Table 2. Current Challenges and Potential Solutions to the Adoption of NAM Methodsa

challenges potential solutions refs

development of regulatory standards and guidelines academia, industry, and regulatory collaborations 9−11
cross-disciplinary initiatives

in vitro, in silico, and combinatorial model development,
evaluation, and standardization

comparisons with traditional methods 13,14
context of use

interindividual, interlab, and interchip, interexperiment
variability

quantification and integration of variability 75

reproducible in vitro and in silico models data and model standards and guidelines 76,77
comprehensive documentation

easy access to validated in silico tools, models, and data data and model repositories 77−85
integrate llms for effective reuse of information

availability of skilled professionals in NAM methods development and dissemination of training programs for NAM methods by the academia,
regulators, and professional communities

14

aAI = artificial intelligence; LLM = large-language model; ML = machine learning; NAM = new approach methodologies; PBPK = physiologically
based pharmacokinetic.
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types along with their strengths and use cases. Traditional in
vivo studies offer insights at the whole-animal level that in vitro
and in silico methods alone cannot achieve. However, when
validated in vitro and in silico approaches are integrated, they
can together yield human-relevant predictions at the whole-
system level. Another key limitation of NAM approaches is the
need for rigorous, context-specific validation to ensure
reliability and regulatory acceptance (87). However, traditional
animal models often fall short in predicting human responses,
with high failure rates observed in clinical translation.4,7,11

Moreover, in silico models rely heavily on a range of
physiological and drug-specific parameters that can be derived
from either previously generated data or fit-for-purpose in vitro
experiments. Thus, if input data or parameters are inaccurate
or incomplete, they can introduce errors or uncertainty in the
predictions. Therefore, it is important to use high-quality and
well-characterized input data to conduct sensitivity analyses
and iteratively refine and validate in silico models with
experimental or clinical data. Overall, while NAM approaches
have limitations, when properly integrated and validated, they
can potentially provide more human-relevant mechanistic
insights than traditional animal models.11 We propose a
structured and iterative “a priori in silico” framework that
integrates NAM components to actively guide preclinical study
design�a step toward more predictive and resource-efficient
drug development.
The successful development, validation, and implementation

of NAM methods will depend on robust international
collaborations among academia, industry, and regulators.12

These collaborations can focus on potential solutions to
current challenges to the adoption of NAMs, such as
variability, standardization, applicability, reproducibility, and
accessibility (Table 2). Moreover, to successfully implement
optimal preclinical development workflows, it is essential to
share data, models, and tools in open-source, user-friendly, and
reproducible formats.74 Numerous existing repositories and
platforms support this need. Open-source model codes can be
easily accessed through platforms like BioModels, the Open
Systems Pharmacology Community, etc [https://github.com/,
https://www.ebi.ac.uk/biomodels/, https://github.com/
Open-Systems-Pharmacology/OSP-based-publications-and-
content/]. Additionally, data-sharing platforms such as the
Critical Path Institute Data Collaboration Center, ImmPort,
Project Data Sphere, Gene Expression Omnibus, The Cancer
Genome Atlas, and many others offer valuable resources
[https://c-path.org/program/data-collaboration-center/,
https://www.immport.org/, https://data.projectdatasphere.
org/, https://www.cancer.gov/ccg/research/genome-
sequencing/tcga, https://www.ncbi.nlm.nih.gov/geo/]. Lever-
aging these tools and platforms more effectively can
significantly enhance preclinical research and development
efforts and ultimately replace the need for animal testing.
One major concern for the adoption of NAMs is the above-

mentioned applicability in a safety context and their capability
to be protective of human health. While NAMs are designed to
be of higher human relevance than the classical in vivo animal
models, they lack the whole-organism context and, thus, retain
uncertainty in their applicability for systemic toxicology.
Further collaborative efforts are needed to generate data and
expand the complementary in silico pathway and model
repositories to further increase the in vivo relevance of the
integrated NAM-based approaches for applicability on a
holistic translational systemic level. As a framework for

pathway expansion, so-called Adverse Outcome Pathways
(AOPs), and the underlying causal effect relationships as
annotated in established public resources such as the AOP wiki
[https://aopwiki.org/] developed for human safety assess-
ment, based on existing biological and disease map- and
knowledge graph construction and reasoning, can be utilized.
The expansion of these qualitative pathway models and their
quantification can serve as a basis for the establishment of
systemic QST models and will require annotation of
biomarkers specifically relevant for adversity to quantify the
qualitative relational, i.e., biological or disease, knowledge
maps.80,83 Such expansion should be conducted in alignment
with curated ontologies and ongoing data harmonization and
curation efforts, and in collaboration with ongoing initiatives,
such as OpenRiskNet, the Comparative Toxicogenomics
Database [https://ctdbase.org/], the Biological Expression
Language, and the Integrated Network and Dynamical
Reasoning Assembler [https://bel.bio/].81,82 As enabling
technologies, large-language models are increasingly explored
and hold the potential for efficient data- and information-
mining and effective reuse of information from these
resources.83

The successful adoption of NAM-based methods will
depend on having skilled professionals implement them
effectively. Therefore, future efforts should prioritize the
development and dissemination of training programs for
these methods.13 Lastly, NAMs also need to overcome social
barriers and legal barriers that may stifle rather than
accommodate or facilitate beneficial and ethical technological
development.84 Overall, in addition to the development and
validation of combinatorial NAMs, the effective implementa-
tion of approaches to enhance preclinical development
predictions and reduce costs will require robust cross-
disciplinary collaborations.

■ CONCLUSIONS
To conclude, despite promising preclinical results, early clinical
development of new therapeutics faces high failure rates due to
poor translation of PK, efficacy, and toxicity data from
preclinical to clinical settings, largely driven by the limitations
of animal models. The substantial costs of these translational
failures, coupled with ethical concerns, underscore the need for
more efficient and reliable preclinical research and develop-
ment methods. Combining NAMs, including human-relevant
in vitro systems, in silico mechanistic models, and advanced
computational methods-AI/ML, can enable simulations to
support preclinical study designs. This approach provides
efficient and more accurate translational predictions for clinical
study designs. Future efforts should focus on validating
combinatorial NAM approaches for regulatory acceptance,
emphasizing international collaborations to establish stand-
ardized frameworks. By integrating mechanistic modeling, AI/
ML, and advanced in vitro systems, we see that the path
toward replacing traditional animal models becomes increas-
ingly viable.
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